[1] Moravej M,Mantovani D.Biodegradable metals for cardiovascular stent application: interests and new opportunities.Int J Mol Sci. 2011;12(7): 4250-4270.[2] Li N,Zheng Y.Novel magnesium alloys developed for biomedical application: a review. J Mater Sci Technol. 2013;29(6):489-502.[3] Zartner P, Cesnjevar R,Singer H,et al.First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby.Catheter Cardiovasc Interv. 2005;66(4):590-594.[4] 杜博,赵学忠.冠心病患者支架内再狭窄的危险因素[J].中国老年学杂志, 2015,9(10):2708-2710.[5] Niinomi M,Nakai M,Hieda J.Development of new metallic alloys for biomedical applications. Acta Biomaterialia. 2012;8(11):3888-3903.[6] Staiger MP,Pietak AM,Huadmai J,et al.Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials.2006;27(9):1728-1734.[7] Garza L, Aude YW,Saucedo JF.Can we prevent in-stent restenosis? Curr Opini Cardiol.2002;17(5):518.[8] Seitz JM,Durisin M,Goldman J,et al.Recent advances in biodegradable metals for medical sutures: a critical review. Adv Healthc Mater. 2015; 4(13):1915-1936.[9] Francis A,Yang Y,Virtanen S,et al.Iron and iron-based alloys for temporary cardiovascular applications.J Mater Sci Mater Med. 2015; 26(3):138.[10] Tsuji T,Tamai H,Igaki K,et al.Biodegradable polymeric stents.Curr Interv Cardiol Rep.2001;3(1): 10-17.[11] Ramcharitar S,Serruys PW.Fully biodegradable coronary stents. Am J Cardiovasc Drugs.2008;8(5):305-314.[12] Meng B,Wang J,Zhu N,et al.Study of biodegradable and self-expandable PLLA helical biliary stent in vivo and in vitro. J Mater Sci Mater Med.2006;17(7):611-617.[13] Zhu X,Braatz RD. A mechanistic model for drug release in PLGA biodegradable stent coatings coupled with polymer degradation and erosion.J Biomed Mater Res A. 2015;103(7):2269-2279.[14] Ma E,Xu J.Biodegradable alloys: the glass window of opportunities.Nat Mater.2009;8(11):855.[15] Im SH,Jung Y,Kim SH.Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for next-generation stents. Acta Biomaterialia. 2017;60(1):3-22.[16] LaDisa JF,Guler I,Olson LE,et al. Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation. Ann Biomed Eng.2003;31(8):972-980.[17] Carlier SG,van Damme LCA,Blommerde CP,et al. Augmentation of wall shear stress inhibits neointimal hyperplasia after stent implantation: inhibition through reduction of inflammation? Circulation. 2003;107(21): 2741-2746.[18] Peuster M,Hesse C,Schloo T,et al.Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials.2006’27(28):4955-4962.[19] Guillory RJ,Bowen PK,Hopkins SP,et al.Corrosion characteristics dictate the long-term inflammatory profile of degradable zinc arterial implants. ACS Biomater Sci Eng. 2016;2(12):2355-2364.[20] Gu X,Zheng Y,Cheng Y,et al.In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials. 2009;30(4):484-498.[21] Tamimi F,Le Nihouannen D,Bassett DC,et al. Biocompatibility of magnesium phosphate minerals and their stability under physiological conditions. Acta Biomaterialia.2011;7(6): 2678-2685.[22] Saris NEL,Mervaala E,Karppanen H,et al. Magnesium: an update on physiological, clinical and analytical aspects. Clinica Chimica Acta. 2000;294(1-2):1-26.[23] Kirkland NT,Birbilis N,Staiger MP.Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomaterialia. 2012;8(3): 925-936.[24] White RE,Hartzell HC.Magnesium ions in cardiac function: regulator of ion channels and second messengers.Biochem Pharmacol. 1989; 38(6):859-867.[25] Gu XN,Zheng YF.A review on magnesium alloys as biodegradable materials. Front Mater Sci China.2010;4(2):111-115.[26] 郑玉峰,吴远浩.处在变革中的医用金属材料[J].金属学报, 2017,53(3): 257-297.[27] Unigovski Y,Eliezer A,Abramov E,et al. Corrosion fatigue of extruded magnesium alloys.Mater Sci Eng A. 2003;360(1-2):132-139.[28] Jafari S,Harandi SE,Raman RKS.A review of stress-corrosion cracking and corrosion fatigue of magnesium alloys for biodegradable implant applications. JOM. 2015;67(5):1143-1153.[29] Hänzi AC,Gerber I,Schinhammer M,et al.On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys.Acta Biomaterialia. 2010;6(5):1824-1833.[30] Li X,Chu C,Chu PK.Effects of external stress on biodegradable orthopedic materials: A review. Bioact Mater. 2016;1(1):77-84.[31] Jafari S,Raman RKS,Davies CHJ,et al. Stress corrosion cracking and corrosion fatigue characterisation of MgZn1Ca0.3 (ZX10) in a simulated physiological environment. J Mech Behav Biomed Mater. 2017;65:634-643.[32] Koo Y,Jang Y,Yun Y. A study of long-term static load on degradation and mechanical integrity of Mg alloys-based biodegradable metals. Mater Sci Eng B Solid State Mater Adv Technol. 2017;219:45-54.[33] Törne K,Örnberg A,Weissenrieder J.Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments. Acta Biomaterialia.2017; (48): 541-550.[34] Zhou LF, Liu ZY,Wu W,et al.Stress corrosion cracking behavior of ZK60 magnesium alloy under different conditions. Int J Hydrogen Energ. 2017;42(41):26162-26174.[35] Choudhary L,Szmerling J,Goldwasser R,et al. Investigations into stress corrosion cracking behaviour of AZ91D magnesium alloy in physiological environment.Procedia Eng.2011;10(7):518-523.[36] Choudhary L,Raman RKS.Mechanical integrity of magnesium alloys in a physiological environment: Slow strain rate testing based study. Eng Fract Mech.2013;(103):94-102.[37] 宋仁国,杨芳儿,翁晓红,等.ZE41镁合金应力腐蚀开裂研究[C].全国氢脆与应力腐蚀及工程应用学术研讨会论文集,四川江油, 2007:33-36.[38] 王璐科,王振家,马全友,等.AZ91D 镁合金在两种盐溶液和空气中的一般腐蚀和应力腐蚀[J].腐蚀与防护, 2006,27(12):599-603.[39] 许越,李家学,李莎.镁合金应力腐蚀机理及其影响因素分析[J].材料科学与工艺,2008,16(3):314-318.[40] Chu CL,Han X,Bai J,et al. Surface modification of biomedical magnesium alloy wires by micro-arc oxidation.Trans Nonferrous Met Soc China. 2014;24(4):1058-1064.[41] Winzer N, Atrens A,Dietzel W,et al.Evaluation of the delayed hydride cracking mechanism for transgranular stress corrosion cracking of magnesium alloys. Mater Sci Eng A. 2007;466(1-2):18-31.[42] Winzer N,Atrens A,Song G,et al. A critical review of the stress corrosion cracking (SCC) of magnesium alloys. Adv Eng Mater. 2005;7(8):659-693.[43] Yang GF,Kim YC,Han HS, et al.In vitro dynamic degradation behavior of new magnesium alloy for orthopedic applications. J Biomed Mater Res B Appl Biomater. 2015;103(4):807-815.[44] Dong L,Song X,Ye Y,et al. Experimental research on degradation performance of magnesium alloy affected by mechanical environment.MATEC Web of Conferences. 2015;31:01006.[45] Zheng Y,Li Y,Chen J,et al.Effects of tensile and compressive deformation on corrosion behaviour of a Mg–Zn alloy. Corr Sci. 2015; (90):445-450.[46] Denkena B,Köhler J,Stieghorst J,et al. Influence of stress on the degradation behavior of Mg LAE442 implant systems. Procedia Cirp. 2013;5(2):189-195.[47] Wang H,Shi Z.In vitro biodegradation behavior of magnesium and magnesiumalloy. J Biomed Mater Res B Appl Biomater. 2011;98(2):203.[48] 劳永华,张文威,徐笑凡,等.AZ31镁合金在人工血浆中的动态降解行为[J].稀有金属材料与工程,2014,43(5):1242-1245.[49] Wang J,Giridharan V,Shanov V,et al.Flow-induced corrosion behavior of absorbable magnesium-based stents. Acta Biomaterialia. 2014; 10(12):5213-5223.[50] Wang J,He Y,Maitz MF,et al.A surface-eroding poly (1, 3-trimethylene carbonate) coating for fully biodegradable magnesium-based stent applications: toward better biofunction, biodegradation and biocompatibility. Acta Biomaterialia.2013;9(10):8678-8689.[51] Lévesque J,Hermawan H,Dubé D,et al. Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials. Acta Biomaterialia.2008’4(2):284-295.[52] Jafari S,Raman RKS,Davies CHJ,et al.Corrosion fatigue of a magnesium alloy in modified simulated body fluid.Eng Fract Mech. 2015;137:2-11.[53] Gu XN,Zhou WR,Zheng YF,et al.Corrosion fatigue behaviors of two biomedical Mg alloys–AZ91D and WE43–in simulated body fluid. Acta Biomaterialia. 2010;6(12):4605-4613.[54] Bian D,Zhou W,Liu Y,et al.Fatigue behaviors of HP-Mg, Mg-Ca and Mg–Zn–Ca biodegradable metals in air and simulated body fluid. Acta Biomaterialia.2016; (41): 351-360.[55] Nie FL,Zheng YF,Wei SC,et al.In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron. Biomed Mater. 2010;5(6): 065015.[56] Li H, Zheng Y, Qin L.Progress of biodegradable metals Prog Nat Sci Mater Int.2014;24(5):414-422.[57] 郑玉峰,杨宏韬.血管支架用可降解金属研究进展[J].金属学报, 2017, 53(10):1227-1237.[58] Moravej M,Purnama A,Fiset M,et al.Electroformed pure iron as a new biomaterial for degradable stents: In vitro degradation and preliminary cell viability studies. Acta Biomaterialia.2010;6(5):1843-1851.[59] Zhu S,Huang N,Xu L,et al.Biocompatibility of pure iron: in vitro assessment of degradation kinetics and cytotoxicity on endothelial cells. Mater Sci Eng C.2009; 29(5):1589-1592.[60] Liu B, Zheng YF.Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomaterialia. 2011;7(3):1407-1420.[61] 吴远浩,周晓晨,李楠,等.可降解金属血管支架研究进展[J].中国材料进展, 2012,31(9):27-34.[62] Bowen PK,Shearier ER,Zhao S,et al.Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn‐Alloys. Adv Healthc Mater. 2016; 5(10):1121-1140.[63] Isotalo TM,Nuutine JP,Vaajanen A,et al.Biocompatibility properties of a new braided biodegradable urethral stent: a comparison with a biodegradable spiral and a braided metallic stent in the rabbit urethra. BJU Int.2006;97(4): 856-859.[64] Li HF,Xie XH,Zheng YF,et al.Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Sci Rep. 2015;5:10719.[65] Chen Y,Zhang W,Maitz MF,et al.Comparative corrosion behavior of Zn with Fe and Mg in the course of immersion degradation in phosphate buffered saline. Corr Sci. 2016;111:541-555. |